商标转让交易动态
NEWS CENTER
NEWS CENTER
2021-07-06
大数据时代企业追求数据化管理,从过去拍脑袋决策,到用数据说话。互联网企业业务快速变化,产品&运营策略事前分析、事中过程监控、事后复盘总结,都需要数据支持。
平均到每个数据产品或数据开发,每周要处理至少5~10个临时取数或报表需求的时候,就很难精力和心思去思考了。看着很忙,但做着很多重复性、低成长的事情。
数据从采集到应用全流程每个环节都会有数据平台或工具来提升加工、应用效率。平台型数据产品常见的问题是花大量的时间在搭建大数据开发套件、数据资产平台、数据应用平台,离业务越来越远,不关心或者无暇关注业务方向。
最终只是给用户提供了数据工具产品,用户使用工具解决什么业务场景下的什么问题了解的不多。到头来沦为纯工具型数据产品。
遇到过数据报表开发吐槽,每天加班也做不完产品的报表和临时取数需求,看过他取数流程,每个需求来的时候,会跟进业务指标统计口径用订单明细表、流量明细表等不同的表去关联取数。
问他为什么不考虑把业务需求梳理一下,搞个通用的数仓模型,这样取数效率不会高一些么?回复是“没时间梳理,临时取数做的多了,数据在哪里取很熟悉,所以不影响”。
“人潜意识当中会倾向于选择做会做的、简单的事情,哪怕是枯燥的重复性动作”,就像这位数据同学,新需求来时第一反应是用习惯的方法去处理,而不是考虑有没有更简单、一劳永逸的方法去提升效率,可以有更多的时间去思考如何赋能。
对于产品和运营等业务部门,最期望的是数据部门可以帮他们把指标监控、数据报表、决策建议一条龙全部服务好,而且可以主动帮他们通过数据发现业务问题、挖掘新的业务增长点。
而数据部门因为需求多、业务了解深度不够等原因,以满足业务需求为主,能够给出超期望的“赋能”并不多,长此以往,业务、和数据人自身,逐渐就默认成为“支撑”了。
遇到过一个报表的数据产品经理,业务提数据报表需求一般是表格的形式,梳理需要的主题、指标、维度,产品经理对接一下统计逻辑,给到报表开发,报表开发基于BI工具,配置出基本上和业务excel表格一致的纯表格“Dashboard”。
(1)居安思危,不满足于现状
作为数据人,深陷需求的“泥潭”时,不能躺平,分析当前困境的原因,寻找突破的方法。比如: