商标转让交易动态
NEWS CENTER
NEWS CENTER
2021-07-06
如何精准的识别目标用户,以及企业用户的行为特征,充分挖掘用户价值,让每一笔钱都掷地有声、好钢用在刀刃上,实现精细化运营,是目前每个企业都在追求的目标。
用户是谁,从哪里来,有什么样的特征和习惯,这些用户画像信息的挖掘,对业务决策以及精细化运营的意义重大,绝对可以算得上是数据赋能业务。
用户画像是基于统计类、预测类、规则类等不同的标签体系,构用户精细化分层能力。
例如五一期间,机票盲盒是OTA行业追捧的明星产品,对于参与盲盒活动的用户,到底来源于哪些渠道,性别、年龄、消费能力如何这些信息的识别,对于流量渠道的投放、产品策略方案设计就很有帮助了。
用户画像的价值不仅是用户群体的识别,更重要的是基于人群精细化分层圈选的能力,构建用户运营、触达的全流程。
例如,针对即将流失的用户派发优惠券进行召回,对服务受损的用户进行安抚关怀等。基于DMP平台,实现用户的精细化运营,在渠道拉新、新客留存、老客复购等场景,都可以提供强大的赋能能力。
DMP除提供基于产品&运营经验的人群圈选和触达能力外,还可以通过算法模型的能力,围绕业务目标(拉新、营收等),提供目标人群建议。
比如,当你在携程上浏览了很多个酒店都没有下单,突然弹出了一个X元的红包,你是不是很有可能更快下单呢?
业务配置的规则是浏览酒店详情页X次,且无成功订单,则派发红包,红包金额基于你的价格敏感度标签算法计算得出。
恰当的时间给合适的用户推荐合适的商品,是平台和用户双赢的事情,既可以提升用户体验,很快找到目标商品,用户下单意愿提高了,业务量也就增加了。
数据赋能离不开算法赋能,基于用户历史浏览行为、用户画像特征、商品画像特征,提供千人千面的算法推荐服务。
大数据的应用出口之一是AI,通过机器学习算法提升产品智能化的能力。AI的概念并不新,最早能追溯到90年代,但真正发展起来还是得益于计算机算力、大数据发展技术。
除了语音识别、人脸识别等生活中的应用场景外,互联网公司常用的场景有:图片优化,例如商品头图的质量会影响用户的点击欲望,靠运营去更新图片一方面耗费人力高,另一方面,运营的审美不一定能够代表大众审美,通过机器学习模型,对图片进行打分,自动确定商品头图。
内容审核:点评、短视频平台等UGC平台,内容合法合规的监管关系到企业的生死存亡(内涵段子),所有内容靠人工审核那发布周期就很长,用户体验差。
抖音上亿日活,每天生产视频内容数十亿,是怎么那么快审核的,有些“危险动作请勿模仿”“内容可能引起不适”标签如何打的呢?
AI技术。即内容发布后,平台基于算法模型对视频内容进行自动审核,识别不了的才会由人工运营审核。