商标转让交易动态
NEWS CENTER
NEWS CENTER
2021-07-06
数据、数据产品对于业务决策支撑、产品应用的场景和价值不做赘述,以下主要列举一些数据人可以为业务“赋能”的场景。
不管是业务自身还是数据部门都很难24小时在电脑/手机盯着业务指标是否正常,更多的时候是即使在办公环境也业务的异常也未必能够及时发现。
当用户反馈时,在这个时间窗口期可能就已经造成了业务损失了。之前某团外卖发展初期,系统稳定性不断改进提升,但还会时不时地中午吃饭的时候服务器突然宕机。
通过对流量预测、波动监控,及时触发电话/短信报警,研发人员第一时间修复,缩短问题发现时差,把业务损失降到最低。
另一个场景是,某段时间外卖BD人员工资是按照销售额、订单量等KPI完成度计算奖金,会有BD为了完成业绩,与商家合作下虚假订单,比如一单十几万的情况。
此时,数据产品可以通过订单金额超过XX,下单人员是企业内部员工等不同维度的规则进行监控,出现触发报警阈值的订单时,及时推送给纪检、或上一级部门审核。
通过指标监控预警,可以帮助业务及时发现问题,或者暴露更多问题,降低或挽回业务损失,从“人找数,到数找人”,是不是很有价值呢。
管理层、业务部门其实更想要的是最直接的答案,数据是什么,是否正常,哪里异常,应该怎么做。
某天大盘DAU同比下降50%,到底是正常的业务现象还是出现了什么问题呢?
通常是基于数据可视化产品,选择不同的维度分析,交叉分析,判断是哪个维度有问题,比如先看App、微信等不同平台,看流量在某一平台集中下降,还是大盘整体趋势相同,再拆分渠道、业务线、流量入口等,逐层拆解,分析下来,可能一个小时就过去了。
在“数据可视化怎样才有灵魂”一文中有专门讲过数据可视化产品的设计方法,产品设计过程,可以考虑把KPI预测、指标波动自动归因等常用的分析手动融入的产品中,基于产品提供自动化的分析思路(异常归因可以考虑使用基尼系数模型,评估那几个维度的波动对整体影响最大)。